Activation of the Cdc42 Effector N-Wasp by the Shigella flexneri Icsa Protein Promotes Actin Nucleation by Arp2/3 Complex and Bacterial Actin-Based Motility
نویسندگان
چکیده
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.
منابع مشابه
Identification of Shigella flexneri IcsA Residues Affecting Interaction with N-WASP, and Evidence for IcsA-IcsA Co-Operative Interaction
The Shigella flexneri IcsA (VirG) protein is a polarly distributed outer membrane protein that is a fundamental virulence factor which interacts with neural Wiskott-Aldrich syndrome protein (N-WASP). The activated N-WASP then activates the Arp2/3 complex which initiates de novo actin nucleation and polymerisation to form F-actin comet tails and allows bacterial cell-to-cell spreading. In a prev...
متن کاملRho Family Gtpase Cdc42 Is Essential for the Actin-Based Motility of Shigella in Mammalian Cells
Shigella, the causative agent of bacillary dysentery, is capable of directing its movement within host cells by exploiting actin dynamics. The VirG protein expressed at one pole of the bacterium can recruit neural Wiskott-Aldrich syndrome protein (N-WASP), a downstream effector of Cdc42. Here, we show that Cdc42 is required for the actin-based motility of Shigella. Microinjection of a dominant ...
متن کاملEffects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility.
Neuronal Wiskott-Aldrich syndrome protein (N-WASP) and the actin-related protein 2/3 (Arp2/3) complex have emerged as critical host proteins that regulate pathogen actin-based motility. Actin tail formation and motility in Listeria monocytogenes require the Arp2/3 complex but bypasses N-WASP signaling. Motility of Shigella flexneri and vaccinia virus requires both N-WASP and the Arp2/3 complex....
متن کاملCdc42 Facilitates Invasion but Not the Actin-Based Motility of Shigella
The enteric pathogen Shigella utilizes host-encoded proteins to invade the gastrointestinal tract. Efficient invasion of host cells requires the stimulation of Rho-family GTPases and cytoskeletal alterations by Shigella-encoded IpaC. Following invasion and lysis of the phagosome, Shigella exploits the host's actin-based polymerization machinery to assemble an actin tail that serves as the propu...
متن کاملMicrobes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis.
Interaction of Shigella flexneri with epithelial cells includes contact of bacteria with the cell surface and release of Ipa proteins through a specialized type III secreton. A complex signaling process involving activation of small GTPases of the Rho family and c-src causes major rearrangements of the subcortical cytoskeleton, thereby allowing bacterial entry by macropinocytosis. After entry, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 146 شماره
صفحات -
تاریخ انتشار 1999